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Motivation: graphical models of CI structure

Conditional independence (CI) concept is at the core of graphical
statistical models. Besides their basic CI interpretation, graphical models
typically admit an extended causal interpretation.

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, San Mateo.

S. L. Lauritzen (1996). Graphical Models. Clarendon Press, Oxford.

As n increases, graphs over n nodes cannot faithfully describe all possible
CI structures induced by n discrete random variables.

This was the motivation to develop a linear-algebraic approach to describe
CI structures using certain vectors whose components are integers.

M. Studený (2005). Probabilistic Conditional Independence Structures.
Springer, London.

Such vectors can also be used to describe the graphical models.
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Introduction: structural imsets

These vectors are called structural imsets.

The method offers a sufficient condition for verifying the probabilistic
implication between CI statements – the respective inference mechanism
is based on linear algebraic operations with imsets.

The imsets can also be utilized in context of learning graphical models:
they can be used as (unique) linear-algebraic representatives of (Markov)
equivalence classes of graphs.

Also, there is a (deep theoretical) connection of structural imsets to
the class of supermodular set functions on subsets of the variable set. The
supermodular/submodular set functions play a crucial role in optimization.

S. Fujishige (2005). Submodular Functions and Optimization (2nd edition).
Elsevier, Amsterdam.

M. Studený (Prague) On structural imsets for graphical models September 17-18, 2022 4 / 22



Conditional independence statements/models

N ... a finite set of variables

P(N) := {A : A ⊆ N} ... the power set of N

AB ... instead of A ∪ B for A,B ⊆ N

i ... will be a shorthand for {i} if i ∈ N

Definition (conditional independence)

Let 〈A,B|C 〉 be a triplet of pairwise disjoint subsets of N. Let P be a
discrete probability distribution over N. We say that A is conditionally
independent of B given C with respect to P and write A ⊥⊥ B |C [P] if

P(a|bc) = P(a|c) for configurations a,b, c for A,B,C with P(bc) > 0 .

A statement of this form will be called a CI statement.

The (discrete probabilistic) CI model induced by P is as follows:

MP := { 〈A,B|C 〉 : A ⊥⊥ B |C [P] } .
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Conditional independence in terms of densities

There are various equivalent definitions of CI which can be extended
beyond the framework of discrete distributions.

Consider a marginally continuous probability distribution P on XN :=
∏

i∈N Xi :

P � µ, where µ is a dominating product measure on XN (Lebesgue measure on

RN or the counting measure on XN). For any A ⊆ N, the marginal PA is

described by its marginal density fA : XN → [0,∞), depending on A-factors only.

Lemma (CI in terms of marginal densities/factorization)

Given a marginally continuous distribution P one has A ⊥⊥ B |C [P] iff

fABC (x) · fC (x) = fAC (x) · fBC (x) for µ-a.e. x ∈ XN .

Another condition is that there are functions gAC : XN → R depending on
AC -factors and hBC : XN → R depending on BC -factors such that

fABC (x) = gAC (x) · hBC (x) for µ-a.e. x ∈ XN .
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The concept of an imset

Definition (imset)

An imset u (over N) is a function u : P(N) 7→ Z.

imset = an abbreviation for i nteger-valued m ulti set

We will regard an imset u over N as a vector whose components are integers and
are indexed by subsets of N: u ∈ ZP(N). Any real set function m : P(N)→ R will
be interpreted as a (real) vector in the same way: m ∈ RP(N). The symbol 〈m, u〉
will then denote the scalar product of two vectors of this type:

〈m, u〉 :=
∑
A⊆N

m(A) · u(A) .

Given A ⊆ N, the symbol δA will denote a special imset given by:

δA(B) =

{
1 if B = A,
0 if B 6= A,

for B ⊆ N.
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Elementary and semi-elementary imsets

Definition (translation of a CI statement, elementary imset)

Given A ⊥⊥ B |C , the corresponding imset representing this CI statement
will be a semi-elementary imset

u〈A,B|C〉 := δABC + δC − δAC − δBC .

By an elementary imset is meant an imset of the form

u〈a,b|C〉 := δabC + δC − δaC − δbC ,

where C ⊆ N and a, b ∈ N \ C are distinct.

The class of elementary imsets over N will be denoted by E(N).

Every semi-elementary imset is a combination of elementary imsets with
non-negative integers as coefficients.
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Example: visualization of imsets
If the number of variables is low, an imset can be visualized in the form of
an enriched Hasse diagram.

N = {a, b, c}
u = u〈a,b|c〉 + u〈a,c|∅〉 ≡ u〈a,bc|∅〉 it is a semi-elementary imset
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Combinatorial and structural imsets
Let us call an imset combinatorial if it is a combination of elementary
imsets with non-negative integers as coefficients.

Definition (structural imset)

A structural imset is an imset u which is a combination of elementary
imsets with non-negative rational coefficients. Equivalently, one of its
multiples by a positive natural number is a combinatorial imset:

n · u =
∑

v∈E(N) kv · v for some n ∈ N and kv ∈ Z+ .

The class of structural imsets over N will be denoted by S(N).

Every combinatorial imset is structural but the converse is not true:

R. Hemmecke, J. Morton, A. Shiu, B. Sturmfels, O. Wienand (2008).
Three counter-examples on semi-graphoids.
Combinatorics, Probability and Computing 17, 239-257.
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Markov condition relative to a structural imset

An analogue of graphical “separation” criteria is a special linear-algebraic
criterion for a structural imset over N (replacing a graph over N).

Definition (representation of a CI statement within a imset)

Given a structural imset u over N and a triplet 〈A,B|C 〉 of pairwise
disjoint subsets of N we will write A ⊥⊥ B |C [u] if
there exists k ∈ N such that k · u − u〈A,B|C〉 is a structural imset.

Definition (Markovian distribution)

Given a structural imset u over N, the induced CI model is as follows:

Mu := { 〈A,B|C 〉 : A ⊥⊥ B |C [u] } .

A probability distribution P is Markovian with respect to u if Mu ⊆MP .

If Mu =MP then P is called perfectly Markovian with respect to u.
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Markov property interpreted as a factorization formula
The multiinformation of a probability distribution P over N is the Kullback-Leibler
divergence H(P ‖

∏
i∈N Pi ). The multiinformation function mP ∈ RP(N) ascribes

the multiinformation of the marginal PA to any set ∅ 6= A ⊆ N; mP(∅) := 0.

A distribution with finite multiinformation is marginally continuous.

Theorem (Markovness characterization)

Let P be a distribution over N with finite multiinformation and u be a
structural imset over N. Then the following conditions are equivalent:

(a) P is Markovian with respect to u,

(b) the marginal densities of P satisfy the product formula:∏
A⊆N

fA(x)u+(A) =
∏

B⊆N
fB(x)u−(B) for µ-a.e. x ∈ XN ,

where u+, u− denote the positive and negative parts of u,

(c) 〈mP , u〉 = 0.
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Example: illustration of the theorem
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u := u〈a,bc|∅〉

u+ = δabc + δ∅ u− = δa + δbc

f∅(x) ≡ 1 mP(∅) = 0

The following conditions are equivalent:

(a) a ⊥⊥ bc | ∅ [P],

(b) fabc(x) = fa(x) · fbc(x) for µ-a.e. x ∈ XN ,

(c) mP(abc)−mP(a)−mP(bc) = 0.
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Completeness of structural imsets

Theorem (completeness result)

Let P be a distribution over N with finite multiinformation.
Then there exists a structural imset u over N such that
P is perfectly Markovian with respect to u, that is, Mu =MP .

In particular, every discrete CI structure and every regular Gaussian CI
structure can faithfully be described by a structural imset.

Therefore, this linear-algebraic method overcomes the limitation of
graphical approaches.
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Structural imsets and supermodular functions

Definition (supermodular function)

A supermodular function is a real set function m : P(N)→ R such that

m(A ∪ B) + m(A ∩ B)−m(A)−m(B) ≥ 0 for all A,B ⊆ N .

An equivalent definition is that 〈m, v〉 ≥ 0 for every v ∈ E(N).

Submodular functions, which play crucial role in optimization, are defined by

converse inequalities (= are (−1)-multiples of supermodular ones).

Theorem (supermodular characterization of structural imsets)

An imset u over N is structural iff it is o-standardized, which means that∑
S : S⊆N u(S) = 0,

for any i ∈ N, one has
∑

S : i∈S⊆N u(S) = 0,

and 〈m, u〉 ≥ 0 for any supermodular function m on P(N).
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Independence implication

Definition (independence implication)

Suppose u, v ∈ S(N) are structural imsets. We say that
u independence implies v and write u ⇀ v if Mv ⊆Mu.

Lemma (independence implication characterization)

Provided that u, v ∈ S(N) one has u ⇀ v iff

∃ k ∈ N such that k · u − v ∈ S(N) .

Another equivalent condition is that, for every supermodular function m
on P(N), one has 〈m, v〉 > 0 ⇒ 〈m, u〉 > 0.

(Standardized) supermodular functions form a (pointed) polyhedral cone in RP(N)

and can be characterized finitely many generators of its extreme rays.

Therefore, to disprove u ⇀ v it suffices to find an extreme supermodular
function m such that 〈m, u〉 = 0 and 〈m, v〉 > 0.
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Testing CI implications by LP tools

The independence implication for imsets allow one to introduce the
so-called structural implication between CI statements:

Given an input list L of CI statements over N and another CI statement t over N,

we put uL :=
∑

`∈L u` (= the sum of semi-elementary imsets) and, if uL ⇀ ut

then we say that L structurally implies t and write L ||= t.

This CI implication is stronger than the probabilistic one.

Moreover, the structural implication can effectively be tested by
computational tools. One can expect that one needs to characterize
extreme supermodular functions for this purpose, but it is not the case !

The point is that one can test structural implication using the methods of
linear programming (LP).

R. Bouckaert, R. Hemmecke, S. Lindner, M. Studený (2010).
Efficient algorithms for conditional independence inference.
Journal of Machine Learning Research 11, 3453-3479.
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Translation of Bayesian networks into imsets

The most popular graphical models in the area of probabilistic reasoning
are Bayesian networks (BNs). The main idea of the algebraic approach
here it to decribe the BN structure by a unique vector representative.

Definition (standard imset)

Given an acyclic directed graph G over N, the standard imset for G is
given by the formula:

uG := δN − δ∅ +
∑
i∈N

[− δ{i}∪paG (i) + δpaG (i) ] ,

where paG (i) := { j ∈ N : j → i in G } is the set of parents of i in G .

The case of a decomposable graphical model (= described by a chordal
undirected graph H) can be viewed as a special case of a BN model.
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Example: standard imset

l

l

l

la b

c

d

G :

?

@
@
@
@@R

�
�

�
��	

uG = δ{a,b,c,d} − δ∅ + [−δ{a} + δ∅ ] + [−δ{b} + δ∅ ]

+ [−δ{a,b,c} + δ{a,b} ] + [−δ{c,d} + δ{c} ]

= δ∅ − δ{a} − δ{b} + δ{c} + δ{a,b} − δ{c,d} − δ{a,b,c} + δ{a,b,c,d}

= u〈a,b|∅〉 + u〈d ,ab|c〉
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Standard imsets and equivalence classes of BNs

Definition (independence equivalence of graphs)

We say that two graphs G and H over N are independence equivalent if
MG =MH , where MG := { 〈A,B|C 〉 : A ⊥⊥ B |C [G ] } denotes the CI
model assigned to G by means of the respective separation criterion.

This typically means that the graphs are Markov equivalent, that is, they
delimit the same class of Markovian distributions.

As concerns the Bayesian networks, we have this:

Lemma (uniqueness of the standard imset)

Acyclic directed graphs G and H over N are independence equivalent if
and only if uG = uH .
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Structural learning by maximizing a quality criterion

Most of learning methods are based on maximizing a quality criterion.

This is a real function Q of a graph G and observed database D which evaluates

how good the graphical model given by G is to explain the occurrence of D.

The point is that every “reasonable” criterion Q for learning BN structures
(e.g. BIC) becomes an affine function of the standard imset. Specifically:

Q(G ,D) = sQD − 〈t
Q
D , uG 〉 , where sQD ∈ R and tQD ∈ RP(N).

The vector tQD is named the data vector (relative to Q).

An important geometric observation is that the set of standard imsets
over a fixed set of variables N is the set of vertices (= extreme points) of
a certain polytope P. To apply efficient LP methods one needs to
characterize the domain P in terms of linear inequalities in RP(N).
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Conclusions

A lot of research effort has been devoted to attempts to characterize the
considered polytopes in terms of linear inequalities.

For example, it was found that extreme supermodular functions
correspond to important facet-defining inequalities for these polytopes.

J. Cussens, M. Studený, D. Haws (2017). Polyhedral aspects of score
equivalence in Bayesian network structure learning.
Mathematical Programming A 164(1/2), 285-324.

An elegant (and challenging) conjecture about the complete facet list of a
polytope for learning decomposable models was recently disproved.

M. Studený, J. Cussens, V. Kratochv́ıl (2021). The dual polyhedron to the
chordal graph polytope and the rebuttal of the chordal graph conjecture.
International Journal of Approximate Reasoning 138, 188-203.
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